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In  this paper we consider the effect of internal heat generation and a spatial 
variation of the gravity field on the onset of thermal convection in spherical 
shells. If the temperature gradient and gravity fields have the same spatial 
variation, then initially quiet fluids are subcritically stable. For these flows the 
effect of inertially non-linear disturbances is not destabilizing if the Rayleigh 
number is below the critical value set by linear theory plus ‘exchange of 
stabilities ’. For subcritically-stable flows a principle of exchange of stabilities is 
not necessary; a stronger statement of stability for the same stability limit can 
be made. For the many cases calculated here in which subcritical instabilities can 
exist, the difference between the linear and energy limits is small and can be 
contracted only toward the energy limit by an improved linear theory. 

1. Introduction 
In this application of energy theory we consider convective instability in 

spherical shells. Subcritical instabilities do not exist when the gravity and tem- 
perature-gradient fields have the same variation. Here, energy theory coin- 
cides with linear theory plus ‘exchange of stabilities’. I n  these cases the 
energy theory is necessarily superior, physically, in that it guarantees stability 
t o  inertially non-linear disturbances, and mathematically, in that the problems 
generated are as simple as in the linear theory but do not involve assumptions of 
questionable validity. The class of basic states considered are chosen for easy 
comparison with linear theory. Thus, we have for the most part considered cases 
which are available in Chandrasekhar’s (1961) monograph. Chandrasekhar’s 
linear results have been recalculated numerically,t extended to some cases not 
treated by him, and compared to corresponding results calculated from energy 
theory. Possible ranges for subcritical instabilities are found only when the 
gravity and temperature-gradient distribution have a different variation. As in 
the internally heated fluid layer considered in part 1, the ranges of possible 
subcritical instabilities, when they exist a t  all, are confined to a very narrow 
band of Rayleigh numbers. 

t Chandrasekhar’s stability results are in excellent agreement (1 yo) with the values 
calculated by numerical methods. These latter are used for our comparison of the energy 
and linear theory. Extended results have been tabulated by Carmi (1966). 
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2. Convective instability in spherical shells-perturbation and energy 
We assume a spherically symmetric and radial gravitational field, 

g = -G(r*)r*, 
and temperature field, T = cro- cr,r*2+ cr,/r*) 

where the temperature field is determined by a combination of an imposed 
temperature difference a t  the boundaries and a distribution of heat sources 
satisfying K V ~ T  = --B. 

The temperature gradient is given by 

(3) 

where cr2 = 
equations governing small perturbations (Chandrasekhar 1961, p. 221) is 

With these assumptions, the system of partial differential 

0 = -Vp*+aG(r*)r*@+vV2u, ( 5 )  

(6) 0 = 2B(r*)u. r* + KV~O,  

where partial-time derivatives have been set to zero in accord with the assump- 
tion that the principle of exchange of stabilities prevails. It is convenient to 
introduce the variables 

} ( 7 )  
r = r*/rT, G, = G(rT), B, = Bfr?), c(r) = G(r*)/G,, 

b(r)  = B(r*)/B,, v = u(ZB,v/aG,K)*, R,f = 2aB,G,rT6/vK. 

With these substitutions (5) and (6) become 

0 = - V p  + (Ra+)* c ( r )  r@ + V2v ,  

0 = (Ra+) b(r)  r . v + VzO, 

(8) 

(9) 

and these are to be solved subject to (3) or (4), ( 5 ) )  and (10) of part 1. 
We wish to compare (8) and (9) with the Euler-Lagrange equations (21) and 

(22) of part 1. To facilitate this comparison we leave g and /3 unspecified. Then 

hV@ + f = hVT/,3+ g/g = - rT r(hb(r) 2B,/p + c(r)  G,/g}, 

and with p = 2B, and g = G,, 

hV@+f = -rTr(hb(r)+c(r)}. (10) 

Now we replace r? R, with R, and rewrite (21) and ( 2 2 )  of part 1 as 

0 = - V p  + QR, {hb(r) + ~ ( r ) ]  re + V 2 v ,  

0 = &(R,/h) (hb(r) + c ( r ) )  r .  v s  V28. 

(11) 

(12) and 

These equations are also to be solved subject to (3) or (4)) ( 5 ) ,  and (10) of part 1. 
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3. Subcritical instabilities-exchange of stabilities 
It is easy to verify that with the form of the gravitational and temperature 

field given in 0 2 and with g = G, and p = 3B,, the h of (216) in part 1 is given by 

With b(r) = c ( r ) ,  h = 1, and the systems of partial differential equations 
governing the energy (equations 11 and 12) are identical to those governing 
small perturbations (equations 8 and 9) when partial time derivatives are set 
to zero. It follows that subcritical instabilities are not possible when b(r) = c(r) .  
%+ is then the critical Rayleigh number below which the flow is definitely stable, 
and above which the flow is definitely unstable. 

As is known (Joseph 1966), rigid rotation cannot decrease R;+ and hence, 
cannot destabilize the flow if Ra+ < Fa+. 

A similar remark applies to the possibility that instability may occur as over- 
stability with Ra+ < &+. This is clearly not possible when b(r) = c(r).  We note 
that the principle of exchange of stabilities has been proved (see Chandrasekhar 
1961) only for the special case b = c = 1. It follows that when b(r) = c(r) ,  the 
lowest critical Rayleigh number can be obtained from the time-independent 
perturbation equations which in this case coincide with the energy equations. 
If overstability can occur, it must occur for Ra+ > %+. 

It is perhaps of even greater interest that for the large number of cases con- 
sidered by Chandrasekhar in which b(r)  = c ( r ) ,  our calculation reveals only a very 
small range of Rayleigh numbers as possible candidates for subcritical in- 
stabilities. Hence, if in these cases it is possible for overstability to set in at 
values of the Rayleigh number less than those given by the time-independent 
perturbation result, these values must be confined to the narrow band in which 
subcritical instabilities are possible. 

4. Eigenvalue problem for spherical shells 
We follow Chandrasekhar in reducing the partial differential equations (8) and 

(9) to a coupled set of ordinary differential equations. First, take the curl of 
(8) twice; then, scalar multiply the result of the two curl operations with the 
position vector. We write the result in spherical polar co-ordinates (r,  A ,  B) ,  

o = - @a+)* c(r)  L28 + V4v. r, (14) 

The dependent variables 8 and v.r  are next expanded in a complete set of 
spherical harmonics 
A 

I v .r  = W(r)YT(A,B), 

8 = @YT(A,B),  
49-2 
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where (see Chandrasekhar, p. 223) 

and P y  are the associated Legendre polynomials. 

Daniel D. Joseph and ShZomo Curmi 

Yy(A,  B )  = PF(cos A )  e*imB, 

Substitution of (15) into (14) and (9) yields 
9 f W  = (Ra+)+c(r)Z(l+ l ) 0 ,  

and g,@ = - (Ra+)+b(r) W ,  

where 
a 2  2 d Z(Z+l) g, = -2+------ 
dr r dr r2 

An identical procedure may be followed to obtain the equations. 

9; W = @,(hb(r) + c(r)}Z(Z + 1) 0, (20) 

9,0 = - *(R,/h) (hb(r) + c ( r ) )  w, (21) 

P = (Ra+)t Z(Z+ 1) 0, Ra+ = C,, (22) 

from ( 1  1)  and (12). Finally with 

in (17) and (18) and p = R,qz+ 1)@h3, Rf = f& (23) 
in (20) and (2 1)  we obtain the perturbation equations 

9; W = c(r )F,  (24) 

(25 )  

(26) 

(27) 

W = P = O ,  (28) 

and W' = d W/dr on rigid surfaces, (29) 

W" = d2W/dr2 on free surfaces. (30) 

9 , P  = - Z(Z+ 1) C,b(r) W ,  

gf W = {hb(r) -I- c(r)> P/%+, 
9J lF  = - Z(Z+ 1) C,,{hb(r) + C ( T ) }  W/2h4. 

and the energy equations 

At the boundaries ( r  = I., y), the functions F and W satisfy 

A full discussion of these boundary conditions is given by Chandrasekhar 
(pp. 224-225). 

5. Solutions 
We solve the eigenvalue problems (24), (25) and (26), (37) plus boundary 

conditions numerically as an initial-value problem. The solutions are represented 
by the linear combinations 

At the inner radius we require t7$ and 4 to satisfy separately (28), (29) or (30). 
In  addition, three arbitrary conditions at  r = 7 are set as follows: 

Fi = 0, F;1= 0, Fi = 1, 

Jq = 0, w; = 1, W ;  = 0, 

w; . W;. w; 
W ;  w; W'; (rigid surface, 
1-4, } = o ,  \ = o  (free surface), 

where the primes indicate differentiation with respect to r. 



A(l,Cl,y) = W, W, W3 

Ra+ < min C,, 
2=1,2, ... 

for any given h > 0. We next seek the best h as that for 

max min G,. 
A>O 1 

= 0, 

(33) 

This is given by (13) as 

s,’ c(r)  r . q g  

b(r)  r .a#’ 

which may be crudely estimated by the first mean-value theorem of integral 
calculus. Assuming that r .i$ is one signed on (7, l),  we find that 

hest = c(l.)/b(r=), (34) 

where r and t are mean values. This estimate we consistently formed with the 
guess that both mean values may be replaced with an arithmetic mean, 

. ? = 7 = - (  s 1 + 7 b  (35) 

We next search the neighbourhood of hest for that h which gives min C,, a maxi- 

mum. In view of the crudity of the estimate, the accuracy with which it gives the 
correct h is remarkable (see tables 1 to 4). 

1 

6. Results 
Some representative results are summarized in tables 1-4 and in figures 1 and 2. 

We have reported on cases for which the variation of b(r)  and c(r)  may be com- 
pared directly with generally available results of Chandrasekhar. A greater 
variety of results and the computer program used in obtaining these results are 
to be found in Carmi (1966). A brief summary of the meaning of the considered 
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FIGURE 1. Variation of the Rayleigh number as a function of 6 for the linear and enorgy 
theories. Free-free surfaces. ---, linear theory ; --, energy theory. 

FIGURE 2. Variation of the Rayleigh number as a function of 6 for the linear and energy 
theories. Rigid-rigid surfaces. ---, linear theory; -, energy theory. 

Free-free surfaces (cf. Chandrasekhar 1961, p. 250) 
rp----p--2-p 7 

Mini- 
Radius mizing he,t Ra+ x Ra+ x 
ratio harmonic equation (34) Best h Energy theory Linear theory 

0.2 1 1.67 1.671 3.132 3.149 
0.3 2 1.54 1.520 4-690 4.708 
0.4 2 1.43 1.426 7.645 7.662 
0.5 3 1.33 1.330 14.46 14.48 
0.6 4 1-25 1.256 32.63 32-66 
0.8 10 1.11 1.110 459.5 459.6 

Rigid-rigid surfaces 

0.2 2 1.67 1.690 7.525 7.568 
0.3 2 1.54 1.420 11.67 11.71 
0.4 3 1.43 1.420 19.35 19.39 
0.5 4 1.33 1.345 37.07 37.12 
0.6 6 1.25 1-250 84.37 84.44 
0.8 12 1.11 1.110 1129 1129 

TABLE 1. Critical Rayleigh numbers for non-linear gravity distribution 
(c = l/r) and linear temperature gradient (b = 1) 



Subcritical convective instability. Part 2 775 

gravity and heat-source variations follows. The implication of these variations 
in astrophysical and geophysical applications may be found in Chandrasekhar 
and in references cited therein. 

First we recall that 
g = - GlrTrc(r), 

and VT = -2rTB,rb(r), 

Free-free surfaces (cf. Chandrasekhar 1961, p. 250) 

Radius 
ratio 

0.2 
0.3 
0.4 
0.5 
0.6 
0-8 

Mini- 
mizing heSt 

harmonic equation (34) 

1 1.52 
2 1.38 
2 1.27 
3 1.20 
4 1.14 

10 1.05 

Rat  x Ra+ x 
Best h Energy theory Linear theory 

1.708 3.107 3.157 
1-440 4.999 5.033 
1.309 8.357 8.379 
1.210 15.91 15.93 
1.140 35-68 35.69 
1-040 484.3 484.3 

Rigid-rigid surfaces 

0.2 2 1.52 1.710 7.586 7.707 
0.3 2 1.38 1.480 12.49 12.57 
0.4 3 1.27 1.310 21.26 21.31 
0.5 4 1.20 1.220 40.93 40.98 
0.6 6 1.14 1.140 92.42 92.46 
0.8 12 1.05 1.05 1191 1191 

TABLE 2. Critical Rayleigh numbers for non-linear gravity distribution 
( c  = (6 + 1 / ~ ~ ) / 7 )  and linear temperature gradient (b = 1) 

Free-free surfaces (cf. Chandrasekhar, 1961, p. 250) 

Mini- 
Radius mizing hest Rat  x 10-3 Rat  x 10-3 

0.2 1 4.63 6.50 0.8732 0.9314 
0.3 2 3.65 4.34 1.737 1.813 
0.4 Y 2.92 3.28 3.419 3.497 
0.5 3 2.37 2.53 7.723 7.828 
0.6 4 1.95 2.03 20.39 20.44 
0.8 10 1.36 1.38 370.1 370.6 

ratio harmonic equation (34) Best h Energytheory Linear theory 

0 

Rigid-rigid surfaces 

0.2 2 4.63 6.57 2.125 2.270 
0.3 2 3.65 4.60 4.174 4.320 
0.4 3 2.92 3.34 8.605 8.786 
0.5 4 2.37 2.55 19.69 19.93 
0.6 6 1.95 2.00 52.38 52.74 
0.8 12 1.36 1.38 908.4 909.8 

TABLE 3. Critical Rayleigh numbers for non-linear gravity distribution 
(c = l/r3) and linear temperature gradient ( b  = 1) 
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so that b = c = 1 implies a linear-gravitational and temperature-gradient field 
directed radially inward. Non-constant b or c implies that one (or both) of the 
fields has a non-linear radial variation. The form of b is further restricted by the 
uniform heat generation. In  general, 

b(r)  = B(r*)/B(rT) = (a,+ +V, /~*~) /B ,  = S+ (1 -S)/r3,  

where 6 = a,/B, is a heat-source parameter. When S = 0 there are no heat sources, 
and the temperature of the quiescent motion is maintained externally. When 

Free-free surfaces, minimizing harmonic = 3 

Heat source Ra+ x Raf x 
parameter (6) he, Best h Energy theory Linear theory 

0.0 0.42 0.396 7.723 7-828 
0.2 0.47 0.450 8,786 8.885 
0-4 0.55 0.525 10.18 10.27 
0.6 0.64 0-625 12.10 12.16 
0.8 0.78 0.770 14.88 14.91 
1.0 1 1 19.22 19.22 

Rigid-rigid surfaces, minimizing harmonic = 4 

0.0 0.42 0.390 19.69 19.93 
0.2 0.47 0.445 22.43 22.65 
0.4 0.55 0.520 26.04 26.23 
0-6 0.64 0.620 31.00 31.15 
0.8 0.78 0.770 38.23 38.30 
1.0 1 1 49.62 49.62 

TABLE 4. Critical Rayleigh numbers for linear gravity distribution (c = 1)  and non-linear 
temperature gradient with variable heat source intensity 

( b  = 6+ (1 - 6)/r3)  for 7 = 0.5 and hest = {8+ (1 - 13) /0 .75~} -~  

S = 1 there is a uniform temperature common to the inner-outer boundary, and 
the temperature variation is maintained solely by the uniform heat-source 
distribution. 

The cases considered here are conveniently grouped as follows: 
(i) b(r )  = c(r ) .  Here h = 1 and the linear and energy results coincide. Sub- 

critical instabilities are not possible. 
(ii) The temperature distribution is linear, b(r )  = 1, but the gravity distribu- 

tion is non-linear: c( r )  varies. The results are summarized in tables 1-3. Sub- 
critical instabilities are possible only in a narrow Rayleigh-number band which 
grows wider as the gravity variation becomes more intense. 

(iii) The temperature distribution is non-linear, b(r )  varies, but the gravity 
distribution is linear; c( r )  = 1. The results are summarized in table 4 and in 
figures 1 and 2. Subcritical instabilities are possible only in a narrow Rayleigh 
number band which grows narrower with the magnitude of the heat-source 
intensity. 
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7. Discussion 
A real value of the energy method is its ability to delineate possible regions of 

subcritical instability. For those flows in which these instabilities are not possible, 
the effect of inertially non-linear disturbances is not destabilizing if the Rayleigh 
number is below the critical value set by linear theory plus ‘exchange of 
stabilities’. For subcritically stable flows, then, a principle of exchange of 
stabilities is not necessary; a stronger statement of stability for the same stability 
limit can be made. Roughly speaking, if the temperature gradient and gravity 
fields have the same spatial variation, then initially quiet fluids are subcritically 
stable. 

For those flows which are not subcritically stable, instabilities may be produced 
by inertially non-linear disturbances under circumstances which would require 
small-amplitude disturbances to decay. The Rayleigh-number ranges for which 
such a situation is possible is in the purview of the energy theory provided that 
the true linear result is known. It is usual, under the conditions that prevail when 
subcritical instabilities can exist, that exchange of stability cannot be proved 
but is assumed for the calculation of the linear limit. It may be that the linear 
limit calculated in this way could give greater critical Rayleigh numbers than 
the linear limit associated with the unsteady linear-perturbation equations. It 
follows, that unless we have a guarantee of the validity of the linear limit, the 
range of possible subcritical instabilities is uncertain a t  the linear end. It is 
comforting that in many of these cases, this band of possible subcritical 
instabilities is already narrow and could only be contracted toward the energy 
limit by a better linear theory. 

The work of parts 1 and 2 was supported in part by NASA grant (NGR-24- 
005-065) to the Space Science Centre of the University of Minnesota. 
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